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NCRG statement for quantum gravity

1 We will not assume that the spacetime is continuum at the
plank scale.

2 Instead propose that it is more effectively described by a
noncommutative coordinate algebra.

3 And in the limit classical RG is recovered.

1E.J. Beggs and S. Majid, Quantum Riemannian Geometry, Grundlehren der
mathematischen Wissenschaften, Vol. 355, Springer (2020) 809pp
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Basic NCRG formalism

We work with A a unital algebra, typically a ∗-algebra over C, in the
role of ‘coordinate algebra’.

1 Differentials are formally introduced as a bimodule Ω1 of
1-forms equipped with a map d : A → Ω1 obeying the Leibniz
rule d(ab) = (da)b + adb.

2 Assume this extends to an exterior algebra (Ω,d) with d2 = 0
and d obeying the graded-Leibniz rule and ∧(g) = 0.

3 A quantum metric is g ∈ Ω1 ⊗A Ω1 and a bimodule map
inverse ( , ) : Ω1 ⊗A Ω

1 → A.

4 A bimodule connection on Ω1 is ∇ : Ω1 → Ω1 ⊗A Ω
1 obeying:

1 ∇(a.ω) = a.∇ω + da⊗ω,
2 ∇(ω.a) = (∇ω).a+ σ(ω⊗da)

with σ a unique ‘generalised braiding’ bimodule map
σ : Ω1 ⊗A Ω1 → Ω1 ⊗A Ω

1.
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Basic NCRG formalism

Finally we define the quantum Levi-Civita connection (QLC) if

1 Is torsion free: T∇ := ∧∇− d vanishes.

2 Metric compatible: ∇g = (∇⊗ id+ (σ⊗ id)(id⊗∇))g .

And the weak version (WQLC) if:

1 Is torsion free.

2 Is cotorsion free: (d⊗ id− id ∧∇)g = 0.
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General axiomatic motivation

In recent years, the quantum Riemannian geometry was extended
to a systematic theory including the QLC and further structure as:

1 ‘spinor’ bimodule S equipped with a bimodule connection ∇S

2 A ‘Clifford action’ ▷ : Ω1 ⊗A S → S.
3 Leading to a quantum-geometric Dirac operator D = ▷ ◦ ∇S .

4 And a inner product used to complete S to a Hilbert Space.
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Motivation for central bases

We say a basis e i is central if is a grassmann algebra: e ie j + e je i = 0.

We will think in central bases if A has trivial centre, Ω1 has a central
basis {s i} and S has a central basis {eα}.

The central bases assumtion resumes into the set of 1-forms are self
adjoint. The metric translates to the matrix gij of metric coefficient
in the basis being hermitian. If σ is the flip map then the
∗-preserving condition on ∇ translates to the Christoffel symbols in
the basis being real.
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Spectral triples: algebraic features

We have important elements:

1 Clifford action ▷ : Ω1 ⊗A S → S, s i▷eα = C iα
βe

β , C iα
β ∈ C.

2 The antilinear map J (aeα) = a∗Jαβe
β , with

JJ = ϵid, ϵ = ±1, Jαβ ∈ C
3 The bimodule connection and braiding: ∇Se

α =
Sα

iβs
i ⊗ eβ , σS(e

α ⊗ s j) = σαj
S iβs

i ⊗ eβ , σαj
S iβ ∈ C.

4 The compatibility of the connection with J and σS :
SjJσ

j
S i = JSi C iJ = ϵ′Jσi

S jC
j

For an even case we need an extra bimodule map γ:

γ2 = id,

{C i , γ} = 0,

γJ = ϵ′′Jγ, ϵ′′ = ±1,

[Si , γ] = 0.
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Spectral Triples: Geometric conditions

* The covariance ∇∇(▷) = 0 condition:
C iSj − σik

jlSkC
l = − 1

2Γ
i
jkC

k

* The compatibility with the Clifford action with Ω2:
(s i ∧ s j)▷eα := s i▷(s j▷eα)− g ijeα.

For the inner product we will assume a reference positive linear
functional

∫
: A → C and set

⟨ϕαeα, ψβe
β⟩ =

∫
ϕ∗αµ

αβψβ

for some positive hermitian matrix µ as ‘measure’ and ϕ, ψ ∈ S.

Q:Difference with Connes?

A: Geometric conditions dont exist in Connes formalism and
generalise the theory.
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Small note

The Quantum geometric Dirac operator construction applied to an
arbitrary unital ∗-algebra over C may or may not obey the axioms of
a spectral triple. For instance

1 For the q-sphere, Cq[S
2], we obtain a q-deformed Dirac

Operator, because J is not fully an antilinear isometry

2 But for the fuzzy sphere,
Cλ[S

2] = U(su2)/⟨x2i = (1− λ2) i ∈ {1, 2, 3}⟩ , has unique
modulo unitary equivalence natural spectral triple.
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Some results and examples

Theorem

Up to a phase in the 2D spinor bundle case, J can be obtained with
r > 0 and z ∈ C as either:

(1) : J =

(
z r

ϵ−|z|2
r −z̄

)
, (2) : J =

(
1 ϵ−1

|z|2 z

z − z
z̄

)
or its transpose. The ϵ = −1 case of (2) needs z ̸= 0 and up to a
phase is also an instance to type (1).
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Some results and examples

Noncommutative Torus

the only geometrically realised Dirac operator for the standard
Euclidean metric and ∇ a WQLC are

D(ψαe
α) = (∂iψαs

i )▷eα + ψαdi s
i▷eα = σiα

β((∂i + di )ψα)e
β . (1)

. With Hilbert space, the state
∫
umvn = δm,0δn,0. Up to unitary

equivalence, (Dψ)β = (∂iψα)σ
iα

β is the only possibility for a
geometrically realised spectral triple on the noncommutative torus for
the Euclidean metric, a WQLC and the standard Hilbert space
structure on S.
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Conclusions

Future path?

⋆ One goal is to fully characterise central bases algebras by
computing more examples, like q-deformed NC torus.

⋆ Interpret the geometric realisation restrictions in particle physics
constraints.

⋆ Extend this to spinors and spectral triples without the Dirac
Operator.
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The end

Thank you for your attention!

Questions?
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